Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.



411 University St, Seattle, USA


+1 -800-456-478-23

Case Studies

Testing the Z80 Chip

If you used a Z80 chip back in the 1980’s, it almost certainly passed through this room. This photo is of the first Fairchild Sentry 610 test system at Mostek. We tested every Z80 chip including Zilog branded ones in this room for many years. (photo from Mostek 1973 Databook). We also tested Fairchild F-8 CPU chips, and exotic parts such as the Magnavox “Star” TV tuner chips. It was general purpose and could test RAMs, calculators, and ROMS, though we made our own custom testers for those. This room pretty much did all the heavy lifting on all the early CPU chips. Mostek had a second source license for many of the popular CPU chips – the Fairchild F-8 series, the Z80, the Intel 8088/6, and the Motorola 68000 family. And we invented the multiplexed DRAM, too.

Fairchild Sentry 610 Tester
Zip Dip
Fairchild Factor Language Handbook 1973 First Edition

Fairchild Systems

Early in 1971, Fairchild Systems introduced the first computer-controlled, modularized, expandable test system product line, called the Sentry series. These third-generation systems are designed to test complex MSI/ LSI integrated circuits, electronic subsystems, and systems.

The machine was a beauty. Going clockwise from the upper left side is the disk drive, a 9 track tape, the Fairchild 24-bit CPU, a terminal and printer, the Sentry 610 Tester ( tall box on the right), and a pair of 64-pin test heads. The door to this temperature and humidity-controlled room is on the right, in the back, down the ramp to the right.

*The disk* was a head-per-track unit, with a large platter rotating on its side. It was 26 inches in diameter and stored 75,000 bits. This particular disk developed flakies in 1974, so I was elected by the bosses to drape it with plastic, crawl under, and spend a shift carefully wiping the surface of it with alcohol. It worked, to my surprise. I remember that the surface looked like raw steel instead of the oxide that I expected..

The CPU was a Sentry 400 series CPU running “Factor”, their test language. I still have the test handbook for it. It was 24 bits wide at about 250 Khz. There were two boxes of cards, about 12″ X 18″, and 12 boards with 2-bit slices per board. You could access it by pulling the black latch on the left side, and swinging open the door. On the front of the CPU was a LED bank behind plexiglas to make das Blinken lights.

I remember this CPU had a “short” and “long” bus that was mapped to the various peripherals. One night it failed to boot, which would cost a few thousand dollars an hour. I assigned a technician in training to fix it and I went off to do something more important. An hour or so later he told me he had found it, but did not know what to do next. He toggled the switches to go to the short data bus, and after a bunch of switch flicking and looking through a file cabinet of documentation, he proved to me he was able to write the necessary data to access the disk via the long data bus and read back the disk register. Sure enough, there was a bit set, which the documents said was the “disk online” bit, and it was off.

“Oh”. I turned around, and the “Online” switch was flipped downward on the disk. “Click”. It was a great learning lesson in depth of how the CPU worked, for him and me both.

According to the” A_Profile_of_Fairchild_Systems_Technologies_1975.pdf, this system was “Optimized for engineering, sophisticated production needs, QA and test center operations, the Sentry 610 is the most versatile analytical tester available for engineering and production. It can perform the widest range of tests for the broadest range of components. At user option, the Sentry 610 can perform high-speed MaS/LSI, PCB, and bipolar tests simultaneously. It offers complete testing at the wafer level and through automatic handlers at full-rated device speeds up to 10 MHz.  The wide choice of peripherals gives the Sentry 610 system massive data handling capacity to manipulate, analyze, compute and generate reports on test procedures in analyzing MaS/LSI “.

Yes, 10 Mhz, which was quite fast for this era.  It was based on an 11 Mhz clock and a wild ECL divide by 11 circuit made of NOR gates and Flip Flops I had to troubleshoot to fix a Maganavox TV tuner test.

*The tester* had two doors that could swing open and had removable panels. Each door held three banks of cards of TTL and ECL logic, with a massive 5-foot tall wire-wrapped backplane. I once tried to count the ICs in the tester and came up with around 60,000 chips. You can see the backside of it here. The black door latch for one of the doors can be on the upper left, and both the hinges are clearly visible running down the back. The center panel was filled with large rack mount (and very heavy) power supplies. At the bottom, in the black area, are three-phase twist-n-lock 220V power connectors, a bank of 110V AC utility outlets, and cables running to the two test heads. The black panel running horizontally had some test BNC’s no one ever used, and a key to power it off and on.



We had to be careful about those AC utility jacks. The tester ground was at -11 volts at several hundred amps. If you clipped a scope to a ground, it would happily melt the insulation off the scope probe until it stunk up the room and pooled on the floor. We had to use a 3-prong adapter with the ground cut off.

The tester could DMA test patterns from the disk to the pins of the DUT at full speed, change power supply voltages at megahertz rates, and via microcode running out of ECL RAM, call test subroutines in hardware at the full clock rate. Each test vector looked like a binary 101011..001, 64 bits long, and each bit set an output high or low, or was an expected response. These bits basically were wired to the test pins. Somebody wrote a Z80 cross compiler that made “Set F 10101010101……100101” statements from assembly language, so we could test actual code on the Z80 at full speed. It was very exotic tech for us. We could only compare it to the assembly language PDP-11 testers we typically made. Mostek made all their own custom testers except for these.

*The test heads* (one on the left has a chair in front of it) had a circular array of “Pin Electronics’ cards. PE cards had a lot of analog circuits for testing the device under test (DUT). This particular machine had 50 pin capacity. The DUT was plugged into a ‘top hat’ that had a “Zip Dip” socket which in turn was attached to the ‘Performance Board’ that had the loads and any special circuits for that part, which in turn plugged directly onto the circular array of PE cards. This is that square black hole in the middle of the test head. These IC-specific parts could be changed quickly, a new tape loaded by 9-track, and a new test set up in a few minutes.

These test heads were built to hold the very heavy Electroglas wafer testers, too.

Z80 Refresh Register